Activation of plant phospholipase Dbeta by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action.
نویسندگان
چکیده
Hydrolysis of phospholipids by plant phospholipase Dbeta (PLDbeta) requires phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here we show that PLDbeta is stimulated by different polyphosphoinositides, among which PI(4,5)P2 is most effective. On the basis of amino acid sequence analysis, PI(4,5)P2 binding assay, and protein engineering studies, we have identified in the catalytic region of PLDbeta a new PI(4,5)P2 binding region (PBR1), which is conserved in eukaryotic PLDs. PBR1 is a second domain besides the previously characterized N-terminal C2 domain of PLDbeta which also binds PI(4,5)P2. Submillimolar levels of calcium ions, while inhibiting PI(4,5)P2 binding by the C2 domain, enhanced the affinity of PBR1 for that phosphoinositide. Substrate binding by PLDbeta was promoted by PI(4,5)P2-bound PBR1. Isolated, recombinant PBR1 bound PI(4,5)P2 specifically and in a saturable manner. Deletion of PBR1 from PLDbeta or mutation of the conserved basic amino acid residues in PBR1 (K437G/K440G) abolished the enzymatic activity. Circular dichroism spectroscopy revealed a conformational change caused by PI(4,5)P2 binding to the catalytic region of PLD. The conformational change apparently helps in the recruitment of the substrate to the active site of the enzyme. The results taken together allow us to describe an anchorage-scooting model for the synergistic activation of PLDbeta by PI(4,5)P2 and Ca2+.
منابع مشابه
Evidence for and characterization of Ca2+ binding to the catalytic region of Arabidopsis thaliana phospholipase Dbeta.
Most types of plant phospholipase D (PLD) require Ca(2+) for activity, but how Ca(2+) affects PLD activity is not well understood. We reported previously that Ca(2+) binds to the regulatory C2 domain that occurs in the N terminus of the Ca(2+)-requiring PLDs. Using Arabidopsis thaliana PLDbeta and C2-deleted PLDbeta (PLDbetacat), we now show that Ca(2+) also interacts with the catalytic regions...
متن کاملKinetic analysis of a mammalian phospholipase D: allosteric modulation by monomeric GTPases, protein kinase C, and polyphosphoinositides.
In mammalian cells, phospholipase D activity is tightly regulated by diverse cellular signals, including hormones, neurotransmitters, and growth factors. Multiple signaling pathways converge upon phospholipase D to modulate cellular actions, such as cell growth, shape, and secretion. We examined the kinetics of protein kinase C and G-protein regulation of mammalian phospholipase D1 (PLD1) in or...
متن کاملKinetic Analysis of a Mammalian Phospholipase D: Allosteric Modulation by Monomeric GTPases, Protein Kinase C, and Polyphospho
In mammalian cells, phospholipase D activity is tightly regulated by diverse cellular signals including hormones, neurotransmitters, and growth factors. Multiple signaling pathways converge upon phospholipase D to modulate cellular actions such as cell growth, shape and secretion. We examined the kinetics of protein kinase C and G-protein regulation of mammalian phospholipase D1 (PLD1) in order...
متن کاملFunctional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate receptor.
The inositol 1,4,5-trisphosphate receptor (InsP3R) plays a key role in intracellular Ca2+ signaling. InsP3R is activated by InsP3 produced from phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C cleavage. Using planar lipid bilayer reconstitution technique, we demonstrate here that rat cerebellar InsP3R forms a stable inhibitory complex with endogenous PIP2. Disruption of InsP3R-PI...
متن کاملBinding of inositol trisphosphate by a liver microsomal fraction.
Accumulating evidence suggests that the increase in cytosolic Ca2+ induced by receptor agonists is mediated by inositol 1,4,5-trisphosphate, a product of phospholipase C-mediated breakdown of phosphatidylinositol 4,5-bisphosphate. The present study employs inositol tris[32P]phosphate to demonstrate a specific receptor binding site in a microsomal fraction of rat liver.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 41 14 شماره
صفحات -
تاریخ انتشار 2002